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Abstract. The results of the study presented in this paper demonstrate that a structural 
model of the natural interest rate, which is consistent with the standard assumptions of 
the natural rate theory, admits an interpretable, observationally equivalent representation 
in which a redefined, ’unnatural’ equilibrium rate is different from the natural rate in the 
original model. The alternative representation was obtained by an invertible transforma-
tion implemented in the minimal state-space form of the natural-rate model. The identifi-
cation theory for state-space models is used in the paper to prove the observational 
equivalence of these two representations. In the alternative representation, the equilibri-
um interest rate fails to meet the assumption of the natural rate theory, because it de-
pends on past demand shocks. The alternative model, being observationally equivalent, 
has different implications for the conduct of monetary policy. The problem of observation-
al equivalence arises in relation to natural-rate models because of the inherent unobserv-
ability of the natural interest rate; a potential solution to this problem could be the aug-
mentation of the information set which is used to identify and estimate the natural rate. 
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1. INTRODUCTION 

 

The aim of this paper is to demonstrate, using a structural model of the natu-

ral (equilibrium) interest rate, that it is possible to find its interpretable, observa-

tionally equivalent alternative. The alternative model allows a different interpreta-

tion of the equilibrium interest rate and has different implications for the conduct 

of the monetary policy. 

In the 1976 paper, Thomas J. Sargent demonstrated that reduced-form mod-

els would not permit to determine the difference between the natural rate theory 

and its alternatives: ’there are always alternative ways of writing the reduced 

form, one being observationally equivalent with the other, so that each is equally 

valid in the estimation period.’ (Sargent, 1976, p. 631). Therefore, the rational 

expectations econometrics, using cross-equation parameter restrictions, has 

been developed in order to solve the problem of observational equivalence. 

However, parameter restrictions leave unresolved what Alan J. Preston (1978) 

called the model identification problem, referring to the fact that there are many 

models with identified parameters that provide the same fit to the data. 
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The natural (equilibrium) rate of interest can be defined as a real rate of inter-

est consistent with real output equalling its potential level in the absence of tran-

sitory shocks to demand (Williams, 2003). The potential output is the level of 

output consistent with the dynamic general equilibrium in the absence of nominal 

rigidities. Structural models of the natural rate are based on two assumptions, 

namely, the natural rate of interest is independent of the output gap (difference 

between actual and potential levels of real output), and a positive output gap 

cannot be sustained without accelerating inflation. 

The model-dependent natural rate of interest is commonly used in the analy-

sis of the monetary policy (see Laubach and Williams, 2003 and 2016; Holston 

et al., 2017; Fries et al., 2018). The monetary policy stance is defined by the real 

rate gap (the difference between the measured real rate of interest and the natu-

ral rate): a positive real rate gap means a contractionary policy stance, while 

a negative real rate gap means an expansionary stance. A contractionary or 

expansionary policy stance is achieved by pursuing policies which vary the real 

rate of interest with respect to the natural rate. In natural-rate models, monetary 

policy is neutral with respect to the potential output and the natural rate of inter-

est, thus its scope is limited to the variations of the output gap. 

The identification and estimation of the natural rate is usually carried out with-

in a state-space representation of the corresponding structural model where the 

natural rate is modeled as an unobservable state variable. Two state-space 

structures are defined to be observationally equivalent if they imply the same 

probability distribution (likelihood function) for observable variables, and a struc-

ture is said to be identifiable if there is no other observationally equivalent struc-

ture (Rothenberg, 1971). 

A method of identification of state-space structures, developed by Wall 

(1987), employs a blend of control theory and econometrics. Given that the likeli-

hood function of a linear dynamic system is completely determined by the first 

two moments, two state-space representations are observationally equivalent if 

they give rise to the same first two moments of observable variables. Using this 

property of linear dynamic systems and the concept of minimal representation 

(a type of representation that includes no redundant state variables), Wall (1987) 

defined a class of observationally equivalent state-space structures and gave an 

operational criterion of observational equivalence. 

The identification and estimation of state variables require the specification of 

initial states. For a state-space representation of a stationary multivariate pro-

cess, initial states can be specified as functions of parameters describing that 

state-space representation. For a non-stationary process, on the other hand, the 

state-space representation should be augmented by a model for initial states 

(see Hamilton, 1994, or Durbin and Koopman, 2012). 

A minimal representation, which includes no redundant state variables, guaran-

tees that for given parameter matrices, a change of initial states will imply 
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a change of the likelihood value. For a non-minimal representation, the same 

value of the likelihood function can be obtained for different initial states and 

the same parameter matrices. Hence, for a non-minimal representation of 

a non-stationary process, different realizations of state variables (e.g. the 

natural rate of interest) can be obtained given the same parameter matrices 

and the same likelihood value. In other words, a non-minimal state-space 

representation of a non-stationary process admits an observationally equiva-

lent representation which has the same parameter matrices and different val-

ues of state variables. 

The natural-rate model considered in this paper is a modification of the wide-

ly-used model developed by Laubach and Williams (2003, 2016). The original 

Laubach-Williams model does not admit an irreducible state-space representa-

tion: the model specification used in that model requires the inclusion of redun-

dant state variables (see Appendix). The model considered in this paper is con-

sistent with the assumptions of the natural rate theory and admits an interpreta-

ble irreducible state-space representation. This representation is used to obtain 

an observationally equivalent model, where a redefined, ’unnatural’ rate of inter-

est depends on past output gaps, which is called hysteresis, and which involves 

the dependence of the equilibrium rate on the path the economy experiences 

towards the equilibrium. 

The hysteresis hypothesis explains the fact that the estimates of natural inter-

est rates in advanced industrial economies have been invariably low in the af-

termath of the financial crisis of 2007–2008 (see Laubach and Williams, 2016; 

Holston et al., 2017; Fries et al., 2018). The low estimates of natural interest 

rates are often explained by persistent deviations from long-run trends (’head-

winds’, as coined by Yellen, 2015). In natural-rate models, these ‘headwinds’ 

come as components of natural interest rates that are exogenous with respect to 

the output gap. However, the association of recessions with low estimates of 

natural rates is consistent with the feedback from the output gap to natural rates 

transferred by ”headwinds”. 

The model with hysteresis has different implications for the conduct of mone-

tary policy: given the fact that the output gap depends on the stance of monetary 

policy, the equilibrium rate of interest, which depends on past output gaps, can 

also be affected by monetary policy. And because prolonged recession is likely 

to cause a downward shift in the equilibrium rate of interest, a more aggressive 

policy intervention is sometimes necessary in order to close the real rate gap. 

The paper consists of four sections. Section 1 introduces the subject of the 

study, Section 2 provides a brief review of literature on the subject, Section 3 

describes observationally equivalent irreducible state-space structures (in gen-

eral terms), Section 4 demonstrates the observational equivalence of a natural-

rate model and a model with hysteresis and Section 5 presents the conclusions 

of the study. 
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2. LITERATURE REVIEW 

 

The concept of the natural interest rate, devised by Knut Wicksell (1898), has 

become popular in empirical research following the publication of Laubach and 

Williams (2003), in which a small semi-structural model was used to measure 

the natural rate of interest in the United States. Some modifications of this model 

were estimated for the Euro Area and other economies (Mésonnier and Renne, 

2007; Garnier and Wilhelmsen, 2009; Holston et al., 2017). There are also modi-

fications of the natural-rate model for the open-economy framework (Fries et al., 

2018; Wynne and Zhang, 2018a), as well as the attempts to estimate the world 

natural rate of interest (Wynne and Zhang, 2018b; Kiley, 2019). Although various 

alternative approaches to the estimation of the natural interest rate have been 

proposed (Fiorentini et al., 2018; Grossman et al., 2019), the Laubach-Williams 

model and its modifications have become the most popular empirical tool for 

measuring the natural rate of interest, frequently cited by policy-makers (Yellen, 

2015; Constancio, 2016). 

Along with the increasing number of articles utilizing either the Laubach-

Williams model or its modifications, there have also been a growing number of 

papers criticizing this approach. For example, the estimates of the natural rate of 

interest were found uncertain (Hamilton et al., 2016; Taylor and Wieland, 2016; 

Beyer and Wieland, 2017), as well as dependent on a priori assumptions concern-

ing the structural relations between unobservable variables (Lewis and Vazquez-

Grande, 2017). 

Fiorentini et al. (2018) argue that the natural interest rate in the Laubach 

and Williams (2003) model is unobservable under certain conditions. The 

authors analyse a state-space representation of a simplified Laubach-

Williams model, and demonstrate that state variables, including the determi-

nants of the natural interest rate, are unobservable in two cases – either when 

the IS curve or the Phillips curve are flat. The unobservability implies that the 

natural rate is not uniquely identified by the model and the data. Fiorentini et 

al. (2018) propose a local-level model as an alternative to the Laubach-

Williams model. 

It can also be demonstrated that the original Laubach-Williams model is not 

consistent with the observability requirement either (see Appendix). Although 

a model that is inconsistent with the observability requirement can be trans-

formed into a model that is consistent with that requirement, such transfor-

mation would result in a loss of the original economic interpretation. The 

modification of the Laubach-Williams model that is presented in this paper 

both fulfils the observability condition and retains the original economic inter-

pretation. For such a model, there is a well-defined class of observationally 

equivalent models. 
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3. OBSERVATIONALLY-EQUIVALENT STATE-SPACE STRUCTURES 

 

The state-space representation presented in this paper is  

 

Transition Equation: 𝜉𝑡 = 𝐹𝜉𝑡−1 + 𝐺𝑥𝑡 + 𝑄𝑣𝑡, (1) 

 

Measurement Equation: 𝑦𝑡 = 𝐻𝜉𝑡 , (2) 

 

where 𝜉𝑡 is a 𝑝 × 1 vector of state variables, 𝑦𝑡 is an 𝑛 × 1 vector of the observed 

explained variables, 𝑥𝑡 is a 𝑘 × 1 vector of the observed exogenous variables, 

and 𝑣𝑡 is a 𝑞 × 1 vector of structural shocks; 𝐹, 𝐺, 𝑄 and 𝐻 are system matrices 

of dimensions 𝑝 × 𝑝, 𝑝 × 𝑘, 𝑝 × 𝑞 and 𝑛 × 𝑝, correspondingly.  

The state-space representation (1)–(2) differs from the state-space represen-

tation used in Laubach and Williams (2003), where some dynamic relations be-

tween variables were included in the measurement equation. The representation 

(1)–(2) encompasses all the dynamic relations in the transition equation. Never-

theless, both the original Laubach-Williams model (see Appendix) and the modi-

fication considered in this paper admit the representation (1)–(2). This represen-

tation facilitates the analysis of observational equivalence without changing 

structural relations between variables. Because all shocks both in the original 

Laubach-Williams model and the modification considered in this paper deter-

mine the model dynamics, all these shocks appear in the transition equation (1). 

Although there are no measurement errors in the equation (2), the methodology, 

described below, would also apply if there were such errors. 

The first two moments of explained variables 𝑦𝑡, 𝜇𝑡 = 𝐸{𝑦𝑡} and 𝛤(𝑡, 𝑠) 

= 𝐸{(𝑦𝑡 − 𝐸{𝑦𝑡} )(𝑦𝑠 − 𝐸{𝑦𝑠} )′}, are given by 

 

𝜇(𝑡) = 𝐻𝐹′𝜉0̅ +  𝐻 ∑ 𝐹𝑡−𝑠𝐺𝑥𝑠
𝑡
𝑠=1 , 

𝛤(𝑡, 𝑠) = {

𝐻𝐹𝑡−𝑠𝑃𝑠𝐻
′ if 𝑡 > 𝑠 

𝐻𝑃𝑡𝐻
′ if 𝑡 = 𝑠,

𝐻𝑃𝑡(𝐹
𝑠−𝑡)′𝐻′ if 𝑡 < 𝑠

 

 

where 𝑃𝑡 = 𝐹𝑃𝑡−1𝐹
′ + 𝑄𝑄′ is the covariance matrix of state variables; and 𝜉0̅ 

and 𝑃0 are the initial conditions. If the eigenvalues of 𝐹 are all inside the unit 

circle, then the process {𝜉𝑡} is stationary and the initial conditions are deter-

mined by the unconditional moments of this process: 𝜉0̅ = 𝐸{𝜉0} and 𝑃0 = 

𝐸{(𝜉0 − 𝐸{𝜉0})(𝜉0 − 𝐸{𝜉0})′}. However, if some eigenvalues of 𝐹 are on the unit 

circle, then the process {𝜉𝑡} is non-stationary and 𝜉0̅ can represent a guess as 

to the value of 𝜉0 based on prior information, while 𝑃0 measures the uncertainty 

associated with the guess (Hamilton, 1994). 
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Following Wall (1987), we say that the two state-space structures 𝑆(𝑖) =

{𝐹(𝑖), 𝐺(𝑖), 𝑄(𝑖), 𝐻(𝑖)} (𝑖 = 1,2) are observationally-equivalent if they produce the 

same first two moments of 𝑦𝑡. (This definition applies to minimal as well as non-

minimal representations). 

The state-space representation (1)–(2) is minimal if the dimension of the 

state-space cannot be reduced without a loss of information about responses of 

the explained variables 𝑦𝑡 to the structural shocks 𝑣𝑡. If the representation (1)– 

–(2) is not minimal, state variables and impulse responses are not uniquely iden-

tified and the model cannot be used for policy analysis. 

A formal definition of a minimal structure uses the impulse response function 

𝛷(ℎ) = ∑ 𝐻𝐹𝑗𝑄ℎ
𝑗=0  and its weighting matrices 𝑊( 𝑗) = 𝐻𝐹𝑗𝑄. A state-space struc-

ture is minimal if for any sequence 𝑗 = 0,1, … , ℎ such that ℎ ≥ (𝑝 − 1), the matrix 

 

[

𝐻𝑄
𝐻𝐹𝑄
⋮
𝐻𝐹ℎ𝑄

] 

 

allows a full-rank decomposition 𝐴(ℎ)𝐵(ℎ), where 𝐴(ℎ) is an (ℎ × 𝑛) × 𝑝 matrix of 

a full column rank and 𝐵(ℎ) is a 𝑝 × 𝑞 matrix of a full row rank (see, e.g., Youla, 

1966). 

The minimality test is based on checking the rank conditions for the weighting 

matrices of the structural shocks (Youla, 1966, Lemma 6): 

 

Observability Condition: 𝑟𝑎𝑛𝑘 [

𝐻
𝐻𝐹
⋮
𝐻𝐹𝑝−1

] = 𝑝, (3) 

 

Controllability Condition: 𝑟𝑎𝑛𝑘[𝑄 𝐹𝑄 … 𝐹𝑝−1𝑄] = 𝑝, (4) 

 

where 𝑝 is the dimension of the state vector 𝜉𝑡. 

The observability condition (3) implies that the state-space model (1)–(2) in-

cludes no state variables that cannot be inferred from observable variables. The 

controllability condition (4) implies that the state-space model includes no state 

variables independent of structural shocks. The observability and controllability 

are the necessary and sufficient conditions for the minimality of the system  

(1)–(2). These conditions guarantee a unique identification of state variables 

and enable the implementation of impulse-response analysis in the model. 

The structures 𝑆(1) = {𝐹(1), 𝐺(1), 𝑄(1), 𝐻(1)} and 𝑆(2) = {𝐹(2), 𝐺(2), 𝑄(2), 𝐻(2)}, as-

sociated with a minimal state-space representation, are observationally equiva-

lent if and only if there is a non-singular 𝑝 × 𝑝 matrix 𝑇 such that 
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𝐹(2) = 𝑇𝐹(1)𝑇−1, 𝐻(2) = 𝐻(1)𝑇−1,  𝐺(2) = 𝑇𝐺(1), 𝑄(2) = 𝑇𝑄(1), (5) 

 

where 𝑇 is a matrix of coordinate transformation: 𝜉𝑡
(2)

= 𝑇𝜉𝑡
(1)

. The argument for 

the equivalence conditions (5) is analogous to the proof of Proposition 1 in Wall 

(1987). The initial conditions are transformed according to the rule: 

 

𝜉0̅
(2)

= 𝑇𝜉0̅
(1)

 and 𝑃0
(2)

= 𝑇𝑃0
(1)

𝑇−1. 

 

The non-singular transformation matrix 𝑇 is uniquely determined for any pair 

of minimal representations. A minimal state-space representation is uniquely 

identified if the only admissible transformation is the identity: 𝑇 ≡ 𝐼𝑝. 

The set of minimal representations forms a well-defined class of observational 

equivalence: there are no observationally-equivalent minimal representations of 

the same model that have identical parameter matrices and different initial 

states. Specifying a model, which admits an interpretable minimal representa-

tion, gives an operational criterion of observational equivalence. 

For non-minimal representations, there is no well-defined class of observa-

tional equivalence: non-minimal representations, which have identical parameter 

matrices and different initial conditions, can be observationally equivalent. 

It means that there are observationally equivalent representations which have 

the same parameter matrices but different realizations of state variables, in-

duced by different initial conditions. For a non-stationary (integrated) process, 

which retains the memory of initial conditions, a unique identification of state 

variables cannot be obtained in a non-minimal representation. However, obser-

vationally equivalent structures can be constructed case-by-case using analyti-

cal form of distributional moments. 

 

4. NATURAL-RATE MODEL 

 

Consider a semi-structural econometric model of the natural interest rate 

which is a modification of the Laubach-Williams model admitting an interpretable 

minimal representation: 

 

Measured Output: 𝑦𝑡 = 𝑦𝑡
∗ + 𝑦̃𝑡 , (6) 

 

Potential Output: 𝑦𝑡
∗ = 𝑦𝑡−1

∗ + 𝑔𝑡−1 + 𝜎𝑦∗𝜀𝑦∗𝑡 , (7) 

 

IS Equation: 𝑦̃𝑡 = 𝑎1𝑦̃𝑡−1 + 𝑎2𝑦̃𝑡−2 + 𝑎𝑟(𝑟𝑡−1 − 𝑟𝑡−1
∗ ) + 𝜎𝑦̃𝜀𝑦̃𝑡, (8) 

 

Phillips Curve: 𝛥𝜋𝑡 = 𝑏1𝛥𝜋𝑡−1 + 𝑏2𝛥𝜋𝑡−2 + 𝑏3𝛥𝜋𝑡−3 + 𝑏𝑦̃𝑦̃𝑡−1 + 𝜎𝜋𝜀𝜋𝑡, (9) 

 

Potential Growth: 𝑔𝑡 = 𝑔𝑡−1 + 𝜎𝑔𝜀𝑔𝑡 , (10) 
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’Headwinds’: 𝑧𝑡 = 𝜌𝑧𝑧𝑡−1 + 𝜎𝑧𝜀𝑧𝑡, (11) 

 

Natural Rate: 𝑟𝑡
∗ = 𝑐𝑔𝑡 + 𝑧𝑡 , (12) 

 

where 𝑦𝑡 is the logarithm of the measured output in period 𝑡; 𝑦𝑡
∗ and 𝑦̃𝑡 are the 

(unobservable) potential output and output gap; 𝑔𝑡 is the growth rate of the po-

tential output; 𝜋𝑡 is the inflation rate; 𝑟𝑡 is the measured real rate of interest; 𝑟𝑡
∗ is 

the unobservable natural rate of interest; (𝑟𝑡 − 𝑟𝑡
∗) is the real rate gap; 𝑧𝑡 is the 

non-growth component of the natural interest rate (‘headwinds’); and 𝜀𝑦∗𝑡, 𝜀𝑦̃𝑡, 

𝜀𝜋𝑡, 𝜀𝑔𝑡, 𝜀𝑧𝑡 are structural shocks which are independent over time and across 

variables and have the standard normal distribution. Note that there are no 

measurement errors in the model – all the shocks enter dynamic equations 

and drive the dynamics of the system. 

The parameters of the model are assumed to satisfy the following restrictions: 

𝑎𝑟 < 0, 𝑏𝑦 > 0 and |𝜌𝑧| ≤ 1. The parameters 𝜎𝑔 and 𝜎𝑧 cannot be identified in the 

model (6)–(12) because of the ‘pileup problem’, discussed by Stock (1994). 

Laubach and Williams (2003) estimate these parameters using the median-

unbiased estimator described in Stock and Watson (1998). The application of 

the median-unbiased estimator requires an additional assumption: 𝜌𝑧 = 1. For 

the estimation of the full system (6)–(12), the parameters 𝜎𝑔 and 𝜎𝑧 are set to be 

equal to their median-unbiased estimators obtained at preliminary stages. 

The potential output 𝑦𝑡
∗ is modeled as an I(2) variable and the growth rate 𝑔𝑡 

is assumed to be a random walk. If the persistence parameter 𝜌𝑧 in equation 

(11) equals one, the process {𝑧𝑡} is a random walk and, as results from equation 

(12), the natural rate of interest 𝑟𝑡
∗ and the growth rate of the potential output 𝑔𝑡 

can diverge. For values of 𝜌𝑧 smaller than one, the process {𝑧𝑡} is stationary and 

the natural rate of interest 𝑟𝑡
∗ is cointegrated with the growth rate of the potential 

output 𝑔𝑡. 

All the equations in the model (6)–(12), except for the IS equation (8), are 

equivalent to the equations in the original Laubach-Williams model. The IS equa-

tion (8) includes only one lag of the real rate gap (𝑟𝑡 − 𝑟𝑡
∗), and this modification 

guarantees the observability of state variables. The original Laubach-Williams 

model, including two lags of the real rate gap in the IS equation, fails the ob-

servability condition (see Appendix). The failure of the observability condition 

implies that the natural rate of interest is not uniquely identified in the model. 

A minimal form of the Laubach-Williams model is derived in the Appendix. How-

ever, it is only possible to obtain it by such a transformation of state variables 

that the Laubach-Williams model loses its original interpretation. 

The model (6)–(12) retains the economic interpretation of the Laubach-

Williams model and has a minimal state-space representation. It is consistent 

with all the standard assumptions of the natural rate theory. The potential output 

𝑦𝑡
∗ and its growth rate 𝑔𝑡 are exogenous with respect to the output gap 𝑦̃𝑡. The 

non-growth component of the natural interest rate 𝑧𝑡 is also modeled as exoge-
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nous with respect to the output gap 𝑦̃𝑡, and, consequently, the natural rate of 

interest 𝑟𝑡
∗ = 𝑐𝑔𝑡 + 𝑧𝑡 is exogenous with respect to the output gap 𝑦̃𝑡. The ’accel-

erationist’ Phillips curve (9) implies that a positive output gap accelerates infla-

tion. Nevertheless, the model can be rewritten in an observationally equivalent 

form, which admits feedback from the output gap to the non-growth component 

of the natural interest rate: 

 

Measured Output: 𝑦𝑡 = 𝑦𝑡
∗ + 𝑦̃𝑡 , (6*) 

 

Potential Output: 𝑦𝑡
∗ = 𝑦𝑡−1

∗ + 𝑔𝑡−1 + 𝜎𝑦∗𝜀𝑦∗𝑡 , (7*) 

 

IS Equation: 𝑦̃𝑡 = 𝑎1𝑦̃𝑡−1 + 𝑎̃2𝑦̃𝑡−2 + 𝑎𝑟(𝑟𝑡−1 − 𝑟̃𝑡−1
∗ ) + 𝜎𝑦̃𝜀𝑦̃𝑡, (8*) 

 

Phillips Curve: 𝛥𝜋𝑡 = 𝑏1𝛥𝜋𝑡−1 + 𝑏2𝛥𝜋𝑡−2 + 𝑏3𝛥𝜋𝑡−3 + 𝑏𝑦̃𝑦̃𝑡−1 + 𝜎𝜋𝜀𝜋𝑡, (9*) 

 

Potential Growth: 𝑔𝑡 = 𝑔𝑡−1 + 𝜎𝑔𝜀𝑔𝑡 , (10*) 

 

‘Headwinds’: 𝑧̃𝑡 = 𝜌𝑧𝑧̃𝑡−1 + 𝛼(𝑦̃𝑡−1 − 𝜌𝑧𝑦̃𝑡−2)𝜎𝑧𝜀𝑧𝑡, (11*) 

 

Natural Rate: 𝑟̃𝑡
∗ = 𝑐𝑔𝑡 + 𝑧̃𝑡 , (12*) 

 

where the non-growth component of the natural rate is redefined as 𝑧̃𝑡 = 𝑧𝑡 +

𝛼𝑦̃𝑡−1 and 𝛼 is a positive constant. This model can be obtained by an invertible 

coordinate transformation in a state-space representation of model (6)–(12). 

The coordinate transformation is a linear transformation of a state vector that 

generates an observationally equivalent state-space representation, where 

some or all components of the transformed state vector are different from the 

components of the original state vector. It also changes structural relations be-

tween the components of state vector. The coordinate transformation is 

achieved by a pre-multiplication of the state vector by an invertible matrix, which 

determines the changes. 

The transformed model retains the same structural form of the IS and the Phil-

lips curve equations. Only one parameter of the IS equation changes: 𝑎̃2 = 𝑎2 +

𝛼𝑎𝑟 < a2. The modified IS equation (8*) satisfies all the restrictions imposed in 

original IS equation (8), although it includes a different equilibrium rate: 

𝑟̃𝑡
∗ = 𝑟𝑡

∗ + 𝛼𝑦̃𝑡−1. The transformed model includes a hysteresis effect: the past 

demand shocks affect the current value of the equilibrium rate 𝑟̃𝑡
∗. 

The model (6)–(12) can be written in the state-space form (1)–(2), where 

 

𝐲𝑡 = [
𝑦𝑡

𝛥𝜋𝑡
], 𝑥𝑡 = [𝑟𝑡−1], 𝐻 = [

1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

], 
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𝜉𝑡 =

[
 
 
 
 
 
 
 
𝑦𝑡

∗

𝑦̃𝑡

𝑦̃𝑡−1

𝑔𝑡

𝑧𝑡

𝛥𝜋𝑡

𝛥𝜋𝑡−1

𝛥𝜋𝑡−2]
 
 
 
 
 
 
 

, 𝐹 =

[
 
 
 
 
 
 
 
 
 
1 0 0 1 0 0 0 0
0 𝑎1 𝑎2 −𝑎𝑟𝑐 −𝑎𝑟 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 𝜌𝑧 0 0 0
0 0 0 0 1 0 0 0
0 𝑏𝑦 0 0 0 𝑏1 𝑏2 𝑏3

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 ]

 
 
 
 
 
 
 
 
 

, 𝐺 =

[
 
 
 
 
 
 
 
 
 
0
𝑎𝑟

2

0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 
 

, 

𝑄 =

[
 
 
 
 
 
 
 
𝜎𝑦∗ 0 0 0 0

0 𝜎𝑦̃ 0 0 0

0 0 0 0 0
0 0 𝜎𝑔 0 0

0 0 0 𝜎𝑧 0
0 0 0 0 𝜎𝜋

0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 
 
 
 

 and 𝑣𝑡 =

[
 
 
 
 
𝜀𝑦∗𝑡

𝜀𝑦̃𝑡

𝜀𝑔𝑡

𝜀𝑧𝑡

𝜀𝜋𝑡 ]
 
 
 
 

. 

 

This state-space representation is irreducible (minimal), i.e. it includes no re-

dundant state variables. The irreducibility is implied by the satisfied observability 

and controllability conditions: 

 

𝑟𝑎𝑛𝑘

[
 
 
 
 
 
 
 
 
𝐻
𝐻𝐹
𝐻𝐹2

𝐻𝐹2

𝐻𝐹3

𝐻𝐹4

𝐻𝐹5

𝐻𝐹6

𝐻𝐹7]
 
 
 
 
 
 
 
 

= 8 and 𝑟𝑎𝑛𝑘[𝑄  𝐹𝑄  𝐹2𝑄  𝐹3𝑄  𝐹4𝑄  𝐹5𝑄  𝐹6𝑄  𝐹7𝑄] = 8, 

 

where the rank is equal to the number of state variables. (The Python routine 

that implements these rank tests is available from the author upon request). 

The vector of state variables 𝜉𝑡 includes non-stationary (integrated) variables 

and requires an initialization model (see Hamilton, 1994 or Durbin and 

Koopman, 2012). The initialization model is not discussed in this paper. For any 

pair of observationally equivalent minimal state-space representations, there is 

a unique invertible transformation of initial conditions (which would not be the 

case for non-minimal representations). 

The coordinate transformation matrix, which generates the model (6*)–(12*) 

from the model (6)–(12), is 
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𝑇 =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 𝛼 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

. 

 

The system matrices of the transformed model 𝐻̃ = 𝐻𝑇−1, 𝐺̃ = 𝑇𝐺 and 𝑄̃ =

𝑇𝑄 are identical to the corresponding matrices of the original model, except for 

the transition matrix 𝐹̃ = 𝑇𝐹𝑇−1: 
 

𝐹̃ =

[
 
 
 
 
 
 
 
1 0 0 1 0 0 0 0
0 𝑎1 𝑎2 + 𝛼𝑎𝑟 −𝑎𝑟𝑐 −𝑎𝑟 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 𝛼 −𝛼𝜌𝑧 0 𝜌𝑧 0 0 0
0 𝑏𝑦̃ 0 0 0 𝑏1 𝑏2 𝑏3

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 

. 

 

The observational equivalence follows from the minimality of the original 

state-space representation and the invertibility of transformation matrix 𝑇. 

For a non-minimal model, such as the original Laubach-Williams model, there 

are multiple realizations of state variables (including the natural rate 𝑟𝑡
∗) that are 

induced by different initial conditions and are observationally equivalent for 

a given structure (see Appendix). 
 

5. CONCLUSIONS 

 

This paper demonstrates that it is possible to transform a structural model of 

the natural (equilibrium) interest rate in such a way as to obtain an interpretable 

observationally equivalent model in which the redefined ’unnatural’ interest rate 

is different, because it depends on past output gaps. 

Specifying a model that admits a minimal state-space representation allows 

a class of observationally equivalent models to be defined. For a well-defined 

class of observationally equivalent models it is easier to identify interpretable 

alternatives and envision model modifications which would exclude such alterna-

tives. 

The cause of the model non-uniqueness is the inherent unobservability of the 

natural (equilibrium) rate, which is determined by other unobservable variables 

and does not directly enter into an equation for an observable variable. It allows 

redefining the equilibrium rate by reshuffling other unobservable variables with-

out losing information about observable variables. A potential solution to this 
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problem is to augment the information set which is used for the identification 

and estimation of the natural rate, for example, the dynamics of the non-growth 

component of the natural rate (𝑧𝑡) can be explained by some observable varia-

bles. Yellen (2015) lists some of the ’headwinds’ that determine the non-growth 

component of the natural interest rate. Augmenting a natural-rate model with 

exogenous observable variables that explain the dynamics of 𝑧𝑡 would restrict 

the class of observationally equivalent models. 

The unobservability problem in the Laubach-Williams model can potentially be 

solved by imposing economically-motivated restrictions on the initial values of 

state variables, or by re-specifying the dynamics of natural-rate components. For 

example, specifying 𝑔𝑡 and 𝑧𝑡 as second-order autoregressive processes may 

solve the problem of unobservability. However, it would require either the esti-

mation or the calibration of additional parameters.  

The issue of the model non-uniqueness becomes important when there is an 

observationally equivalent model which admits a meaningful alternative interpre-

tation. In the example presented in this paper, the hysteresis effect in the trans-

formed model can explain the persistent shift in the level of the equilibrium inter-

est rate caused by a demand-driven recession. This interpretation is consistent 

with persistently low real interest rates in many advanced industrial economies 

in the aftermath of the financial crisis of 2007–2008. The model, in which there is 

a feedback from the output gap to the equilibrium interest rate, has particular 

implications for the monetary policy, namely, it calls for a more active monetary 

policy response to contractionary demand shocks. 

 

APPENDIX. MINIMAL REPRESENTATION  

OF THE LAUBACH-WILLIAMS MODEL 

 

Consider the original Laubach-Williams model: 

 

Measured Output: 𝑦𝑡 = 𝑦𝑡
∗ + 𝑦̃𝑡 , (13) 

 

Potential Output: 𝑦𝑡
∗ = 𝑦𝑡−1

∗ + 𝑔𝑡−1 + 𝜎𝑦∗𝜀𝑦∗𝑡 , (14) 

 

IS Equation:          𝑦̃𝑡 = 𝑎1𝑦̃𝑡−1 + 𝑎2𝑦̃𝑡−2 +
𝑎𝑟

2
∑ (𝑟𝑡−𝑗 − 𝑟𝑡−𝑗

∗ )2
𝑗=1 + 𝜎𝑦̃𝜀𝑦̃𝑡,            (15) 

 

Phillips Curve: 𝜋𝑡 = 𝑏𝜋𝜋𝑡−1 + (1 − 𝑏𝜋)𝜋̅𝑡−2,4 + 𝑏𝑦̃𝑦̃𝑡−1 + 𝜎𝜋𝜀𝜋𝑡, (16) 

 

Potential Growth: 𝑔𝑡 = 𝑔𝑡−1 + 𝜎𝑔𝜀𝑔𝑡 , (17) 

 

’Headwinds’: 𝑧𝑡 = 𝑧𝑡−1 + 𝜎𝑧𝜀𝑧𝑡, (18) 

 

Natural Rate: 𝑟𝑡
∗ = 𝑐𝑔𝑡 + 𝑧𝑡 , (19) 
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where 𝑦𝑡 is the logarithm of the measured output in the period t; 𝑦𝑡
∗ and 𝑦̃𝑡 are 

the (unobservable) potential output and output gap; 𝑔𝑡 is the growth rate of the 

potential output; 𝜋𝑡 is the inflation rate; 𝑟𝑡 is the measured real rate of interest; 

𝜋̅𝑡−2,4 is the average of inflation over periods 𝑡– 2, 𝑡– 3 and 𝑡– 4; 𝜋̅𝑡−2,4 =

(𝜋𝑡−2 + 𝜋𝑡−3 + 𝜋𝑡−4)/3; 𝑟𝑡
∗ is the unobservable natural rate of interest; (𝑟𝑡 − 𝑟𝑡

∗) is 

the real rate gap; 𝑧𝑡 is the non-growth component of the natural interest rate 

(’headwinds’); and 𝜀𝑦∗𝑡, 𝜀𝑦̃𝑡, 𝜀𝜋𝑡, 𝜀𝑔𝑡, 𝜀𝑧𝑡 are structural shocks which are inde-

pendent over time and across variables and have the standard normal distribu-

tion. 

Using the definition of 𝜋̅𝑡−2,4 and the restriction on inflation lags in the equa-

tion (16), it can be rewritten as: 

 

Phillips Curve: 𝛥𝜋𝑡 = 𝑏1𝛥𝜋𝑡−1 + 𝑏2𝛥𝜋𝑡−2 + 𝑏3𝛥𝜋𝑡−3 + 𝑏𝑦̃𝑦̃𝑡−1 + 𝜎𝜋𝜀𝜋𝑡, (16*) 

 

where 𝑏1 = (𝑏𝜋 − 1), 𝑏2 =
2

3
(𝑏𝜋 − 1) and 𝑏3 =

1

3
(𝑏𝜋 − 1). The equations (16) and 

(16*) are equivalent representations of the Phillips curve. 

Since all disturbances (𝜀𝑦∗𝑡, 𝜀𝑦̃𝑡, 𝜀𝜋𝑡, 𝜀𝑔𝑡 and 𝜀𝑧𝑡) in the model (13)–(19) are 

structural shocks entering dynamic equations, it can be written in the state-

space representation (1)–(2) where  

 

𝜉𝑡 =

[
 
 
 
 
 
 
 
 
 
𝑦𝑡

∗

𝑦̃𝑡

𝑦̃𝑡−1

𝑔𝑡

𝑔𝑡−1

𝑧𝑡

𝑧𝑡−1

𝛥𝜋𝑡

𝛥𝜋𝑡−1

𝛥𝜋𝑡−2]
 
 
 
 
 
 
 
 
 

, 𝐹 =

[
 
 
 
 
 
 
 
 
 
 
1 0 0 1 0 0 0 0 0 0

0 𝑎1 𝑎2 −
𝑎𝑟𝑐

2
−

𝑎𝑟𝑐

2
−

𝑎𝑟

2
−

𝑎𝑟

2
0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 𝜌𝑧 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 𝑏𝑦 0 0 0 0 0 𝑏1 𝑏2 𝑏3

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 ]

 
 
 
 
 
 
 
 
 
 

, 

 

𝐺 =

[
 
 
 
 
 
 
 
 
 
0 0
𝑎𝑟

2

𝑎𝑟

2

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0]

 
 
 
 
 
 
 
 
 

, 
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𝐲𝑡 = [
𝑦𝑡

𝛥𝜋𝑡
], 𝑥𝑡 = [

𝑟𝑡−1

𝑟𝑡−2
], 𝐻 = [

1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0

], 

𝑄 =

[
 
 
 
 
 
 
 
 
 
 
𝜎𝑦∗ 0 0 0 0

0 𝜎𝑦̃ 0 0 0

0 0 0 0 0
0 0 𝜎𝑔 0 0

0 0 0 0 0
0 0 0 𝜎𝑧 0
0 0 0 0 0
0 0 0 0 𝜎𝜋

0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 

 and 𝑣𝑡 =

[
 
 
 
 
𝜀𝑦∗𝑡

𝜀𝑦̃𝑡

𝜀𝑔𝑡

𝜀𝑧𝑡

𝜀𝜋𝑡 ]
 
 
 
 

. 

 

This state-space representation is non-minimal: it includes two redundant 

(unobservable) states. The redundancy follows from the failure of the observabil-

ity rank condition (The Python routine that implements the rank test is available 

from the author upon request): 

 

𝑟𝑎𝑛𝑘

[
 
 
 
 
 
 
 
 
 
 
𝐻
𝐻𝐹
𝐻𝐹2

𝐻𝐹2

𝐻𝐹3

𝐻𝐹4

𝐻𝐹5

𝐻𝐹6

𝐻𝐹7

𝐻𝐹8

𝐻𝐹9]
 
 
 
 
 
 
 
 
 
 

= 8 < 10. 

 

The source of the redundancy is the imbalance in the dynamics of state varia-

bles: although variables 𝑔𝑡 and 𝑧𝑡 are defined as first-order autoregressive pro-

cesses (random walks), two lags of each variable are included in the IS equa-

tion: 

𝑦̃𝑡 = 𝑎1𝑦̃𝑡−1 + 𝑎2𝑦̃𝑡−2 +
𝑎𝑟

2
∑(𝑟𝑡−𝑗 − 𝑟𝑡−𝑗

∗ )

2

𝑗=1

+ 𝜎𝑦̃𝜀𝑦̃𝑡 =

𝑎1𝑦̃𝑡−1 + 𝑎2𝑦̃𝑡−2 +
𝑎𝑟

2
∑(𝑟𝑡−𝑗 − 𝑐𝑔𝑡−𝑗 − 𝑧𝑡−𝑗)

2

𝑗=1

+ 𝜎𝑦̃𝜀𝑦̃𝑡.

 

 

A minimal representation can be obtained by applying a decomposition which 

is analogous to the decomposition used in Youla (1966, Corollary 2). The coor-
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dinate transformation of the state vector, which can be implemented to obtain 

the decomposition, is given by the invertible matrix below: 

 

𝑇 = [
𝑇(0)

𝑇(1)
] =

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

0 0 1 0
𝑎𝑟𝑐

2𝑎2
0

𝑎𝑟

2𝑎2
0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0
1

𝜌𝑧
−1 0 0 0]

 
 
 
 
 
 
 
 
 
 

. 

 

The sub-matrix 𝑇(0) composed of the first eight rows of the matrix 𝑇 generates 

a minimal state vector 𝜉𝑡
(0)

= 𝑇(0)𝜉𝑡. The sub-matrix 𝑇(1) composed of the last 

two rows of the matrix 𝑇 generates a vector of redundant states 𝜉𝑡
(1)

= 𝑇(1)𝜉𝑡 

which affect neither the minimal state vector 𝜉𝑡
(0)

 nor the vector of explained 

variables 𝑦𝑡. Because of the redundancy, the transformation matrix 𝑇 is not 

unique. 

The structure of the minimal state-space system is 

 

𝜉𝑡
(0)

=

[
 
 
 
 
 
 
 
𝑦𝑡

∗

𝑦̃𝑡

𝑤𝑡

𝑔𝑡

𝑧𝑡

𝛥𝜋𝑡

𝛥𝜋𝑡−1

𝛥𝜋𝑡−2]
 
 
 
 
 
 
 

, 𝐹(0) =

[
 
 
 
 
 
 
 
 
1 0 0 1 0 0 0 0

0 𝑎1 𝑎2 −
𝑎𝑟𝑐

2
−

𝑎𝑟

2
0 0 0

0 1 0
𝑎𝑟𝑐

2𝑎2

𝑎𝑟

2𝑎2
0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 𝜌𝑧 0 0 0
0 𝑏𝑦 0 0 0 𝑏1 𝑏2 𝑏3

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 ]

 
 
 
 
 
 
 
 

, 𝐺(0) =

[
 
 
 
 
 
 
 
 
 
0 0
𝑎𝑟

2

𝑎𝑟

2

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0]

 
 
 
 
 
 
 
 
 

, 

𝐲𝑡 = [
𝑦𝑡

𝛥𝜋𝑡
], 𝑥𝑡 = [

𝑟𝑡−1

𝑟𝑡−2
], 𝐻 = [

1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

], 

 

where neither the new state variable 𝑤𝑡 = 𝑦̃𝑡−1 +
𝑎𝑟

2𝑎2
(𝑐𝑔𝑡−1 + 𝑧𝑡−1) nor the trans-

formed equation describing the dynamics of the output gap have a meaningful 

economic interpretation: 

 

𝑦̃𝑡 = 𝑎1𝑦̃𝑡−1 + 𝑎2𝑤𝑡−1 +
𝑎𝑟

2
(𝑟𝑡−1 − 𝑟𝑡−1

∗ ) +
𝑎𝑟

2
 𝑟𝑡−2 + 𝜎𝑦̃𝜀𝑦̃𝑡. (20) 
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The equation (20) cannot be interpreted as an IS equation. If we try to restore 

the original model (13)–(19) from its minimal form by inverting the transformation 

𝑇, then any choice of initial values 𝑦−1, 𝑔−1 and 𝑧−1 such that 𝑤0 = 𝑦̃−1 +
𝑎𝑟

2𝑎2
(𝑐𝑔−1 + 𝑧−1) does not change will generate an observationally equivalent 

model with a different natural rate of interest. 

Hendry (1995, p. 36) defines both the uniqueness and the interpretability as 

necessary conditions for the model identification. In the original Laubach-

Williams model, state variables are consistent with the assumed interpretation, 

but they are not unique (multiple realizations of the natural interest rate are pos-

sible in the same model). If the Laubach-Williams model is reduced to a minimal 

representation, state variables are uniquely identified, but the model loses the 

assumed interpretation. The problem of identification should be reconsidered at 

an earlier stage, when the model specification is selected. The model specifica-

tion (6)–(12) guarantees both the uniqueness of state variables and their inter-

pretability. 
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